Peter Andrews, Bill Slough

Through the artist's eye

Background
The Elements: old and new

Lincoln connection

Number theory
Bk VII, Prop. 1

Efficiency
Extension

# Euclid and the Greatest Common Divisor 

Peter Andrews Bill Slough<br>Mathematics and Computer Science Department Eastern Illinois University<br>A Futuristic Look Through Ancient Lenses:<br>A Symposium on Ancient Greece<br>October 29, 2012

$\cdots$
EASTERN ILLINOIS UNIVERSITY*

Euclid and the Greatest Common Divisor

## Through the

 artist's eye Background The Elements: old and newLincoln connection

Number theory Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application

## The school of Athens



Raphael fresco (1509-1510)
$\cdots$
EASTERN ILLI NOIS UNIVERSIT Y

## Euclid (or Archimedes?) with students

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection
Number theory Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application


## Euclid as geometer

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln connection

Number theory Bk V/I, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application


## Oxford University celebrates the sciences

"Cathedral to Science" : 28 statues of scientists, philosophers, and engineers

Euclid and the
Greatest Common Divisor


Joseph Durham, Oxford University Museum of Natural History

## What do we know about Euclid?

- Born ca. 300 BCE
- Prominent mathematician of antiquity - "father of geometry"
- Authored mathematical treatise Elements; foundation for logic, mathematics and modern science
- Taught at Alexandria during time of King Ptolemy I
- Provided rigorous foundation:
- definitions
- postulates (axioms)
- proofs
- Author of other books, including Optics and Elements of Music
- Response to king (?): "There is no royal road to geometry."

EASTERN ILLINOIS UNIVERSITY*

Euclid and the Greatest Common Divisor

Through the artist's eye

## Background

## The Elements:

 old and newLincoln connection

Number theory Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application

## Papyrus fragment: ca. 100 CE



## 



3
EASTERN

Euclid and the Greatest Common Divisor

## Through the

 artist's eye
## Background

## The Elements:

 old and newLincoln
connection
Number theory Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application

## Bodleian library, Oxford: 888 CE

## Title page


r
Eattern ILIINOIS

Euclid and the Greatest Common Divisor

Through the artist's eye

## Background

## The Elements:

 old and newLincoln connection

Number theory Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application

Bodleian library: 888 CE
Book VII, Proposition 1


EASTERN ILLINOIS UNIVERSITY*

## Elementa Geometriae, Venice: 1482

## First typeset edition

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Elementa Geometriae, Venice: 1482

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements:

## old and new

Lincoln connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application
$r$
EASTERN LLIL NOIS

## First English version

## London: 1570

Euclid and the Greatest Common Divisor

Through the artist's eye

## Background

## The Elements:

 old and newLincoln connection
Number theory
Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application


Imprinted at London by Iohn Daye.

## Oliver Byrne: 1847

Attempts to "color-code" mathematical proofs

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln connection

Number theory Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application


## Oliver Byrne: 1847

Euclid and the Greatest Common Divisor

Through the artist's eye

Background

## The Elements:

 old and newLincoln connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Oliver Byrne: 1847

## Euclid and the

 Greatest Common DivisorThrough the artist's eye

Background
The Elements: old and new

Lincoln connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application

## INTRODUCTION.

xy
this plainly appears from reafoning, fimilar to that juft employed in defining, or rather defcribing a point and a line.

The propofition which we have felected to elucidate the manner in which the principles are applied, is the fifth of the firft Book.

In an ifofceles triangle $A B C$, the internal angles at the bafe $A B C$, ACB are equal, and when the fides $\mathrm{AB}, \mathrm{AC}$ are produced, the external angles at the bafe BCE, CBD are alfo equal.
Produce $\qquad$ and $\qquad$
make $\qquad$
Draw
(B. 1. pr. 3 )

$=$ $\qquad$
$\qquad$
$\qquad$ and

common :

and

(B. 1. pr. 4.)

Again in


$$
=
$$

## Online: with Java applets

Euclid and the Greatest Common Divisor artist's eye Background

The Elements: old and new

Lincoln connection

Number theory Bk VII, Prop. 1

http://aleph0.clarku.edu/~djoyce/java/elements/elements.html

## The Abraham Lincoln connection

Through the artist's eye

Background
The Elements: old and new

Lincoln connection

"He studied and nearly mastered the Six-books of Euclid (geometry) since he was a member of Congress. He began a course of rigid mental discipline with the intent to improve his faculties, especially his powers of logic and language. Hence his fondness for Euclid, which he carried with him on the circuit till he could demonstrate with ease all the propositions in the six books; often studying far into the night, with a candle near his pillow, while his fellow-lawyers, half a dozen in a room, filled the air with interminable snoring."

## Euclid: founder of number theory

- Number theory is the study of the integers
- Euclid introduced concepts of number theory:
- whole number
- prime number
- composite number
- perfect number

$$
(\mathrm{e} . \mathrm{g} ., 6=1+2+3,28=1+2+4+7+14)
$$

- Major results
- Method to find the greatest common divisor of two whole numbers
- Whole numbers can be uniquely factored into primes (e.g., $1035=3 \cdot 3 \cdot 5 \cdot 23$ and this is unique)
- There are an infinite number of primes
- If $2^{p}-1$ is prime, then $2^{p-1}\left(2^{p}-1\right)$ is perfect (e.g., for $p=3,2^{3}-1$ is prime and so $2^{2}\left(2^{3}-1\right)=28$ is perfect)


## Definitions from the Elements, Book VII

An unit is that by virtue of which each of the things that exist is called one.


A number is a multitude composed of units.


A number is a part of a number, the less of the greater, when it measures the greater.

## Definitions from the Elements, Book VII

A prime number is that which is measured by an unit alone.
5 is prime:


Numbers prime to one another are those which are measured by an unit alone as a common measure.

4 and 9 are prime to each other:


A perfect number is that which is equal to its own parts.
$6=1+2+3:$


## Book VII, Proposition 1

Two unequal numbers being set out, and the less being continually subtracted in turn from the greater, if the number which is left never measures the one before it until an unit is left, the original numbers will be prime to one another.

What does this say? Let's look at an example...

## Book VII, Proposition 1: example

Euclid and the
Greatest
Common Divisor

Through the artist's eye

Background
The Elements:
old and new
Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application

## Book VII, Proposition 1: example

Euclid and the
Greatest
Common Divisor

Through the artist's eye

Background
The Elements:
old and new
Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 140 | 33 | subtract: $140-33=107$ |
| 107 | 33 | subtract: $107-33=74$ |

## Book VII, Proposition 1: example

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 140 | 33 | subtract: $140-33=107$ |
| 107 | 33 | subtract: $107-33=74$ |
| 74 | 33 | subtract: $74-33=41$ |
| 41 | 33 | subtract: $41-33=8$ |
| 8 | 33 | swap |
| 33 | 8 | subtract: $33-8=25$ |
| 25 | 8 | subtract: $25-8=17$ |

## Book VII, Proposition 1: example

$$
\begin{array}{ccl}
x & y & \text { action } \\
140 & 33 & \text { subtract: } 140-33=107 \\
107 & 33 & \text { subtract: } 107-33=74 \\
74 & 33 & \text { subtract: } 74-33=41 \\
41 & 33 & \text { subtract: } 41-33=8 \\
8 & 33 & \text { swap } \\
33 & 8 & \text { subtract: } 33-8=25 \\
25 & 8 & \text { subtract: } 25-8=17 \\
17 & 8 & \text { subtract: } 17-8=9
\end{array}
$$

## Book VII, Proposition 1: example

## Book VII, Proposition 1: example

## Greatest Common Divisor (Measure)

- Given two positive whole numbers, say 1035 and 759
- We are looking for a common divisor (measure)
- $1035=3 \cdot 345$ and $759=3 \cdot 253$ so 3 is a common divisor


## Greatest Common Divisor (Measure)

- Given two positive whole numbers, say 1035 and 759
- We are looking for a common divisor (measure)
- $1035=3 \cdot 345$ and $759=3 \cdot 253$ so 3 is a common divisor
- $1035=23 \cdot 45$ and $759=23 \cdot 33$ so 23 is a common divisor
- We want the greatest common divisor, however. Is it 23 ?


## Greatest Common Divisor (Measure)

- Given two positive whole numbers, say 1035 and 759
- We are looking for a common divisor (measure)
- $1035=3 \cdot 345$ and $759=3 \cdot 253$ so 3 is a common divisor
- $1035=23 \cdot 45$ and $759=23 \cdot 33$ so 23 is a common divisor
- We want the greatest common divisor, however. Is it 23?
- No.
$1035=69 \cdot 15$ and $759=69 \cdot 11$, so 69 is a common divisor. Is it the greatest common divisor?


## Greatest Common Divisor (Measure)

- Given two positive whole numbers, say 1035 and 759
- We are looking for a common divisor (measure)
- $1035=3 \cdot 345$ and $759=3 \cdot 253$ so 3 is a common divisor
- $1035=23 \cdot 45$ and $759=23 \cdot 33$ so 23 is a common divisor
- We want the greatest common divisor, however. Is it 23 ?
- No. $1035=69 \cdot 15$ and $759=69 \cdot 11$, so 69 is a common divisor. Is it the greatest common divisor?
- Yes.

$$
1035=3 \cdot 3 \cdot 5 \cdot 23 \text { and } 759=3 \cdot 11 \cdot 23
$$

> We want a method to determine the greatest common divisor of any pair $(a, b)$ of whole numbers and we don't want to work "too hard."

## Method 1: brute force (ignoring Euclid)

For large values of $a$ and $b$, this is very labor-intensive! We can do much, much better.

## Euclid's idea

## Euclid's (simplified) rule

Suppose $x$ and $y$ are positive integers with $x \geq y$. Then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$.

## Proof sketch

- $\operatorname{gcd}(x, y) \leq \operatorname{gcd}(x-y, y)$
- $\operatorname{gcd}(x-y, y) \leq \operatorname{gcd}(x, y)$


## Euclid's idea: proof details, part 1

Show $\operatorname{gcd}(x, y) \leq \operatorname{gcd}(x-y, y)$
Let $d$ be a common divisor of $x$ and $y$.
We need to show that $d \mid(x-y)$ and $d \mid y$.

## Euclid's idea: proof details, part 1

Show $\operatorname{gcd}(x, y) \leq \operatorname{gcd}(x-y, y)$
Let $d$ be a common divisor of $x$ and $y$.
We need to show that $d \mid(x-y)$ and $d \mid y$.
Since $d \mid x$ and $d \mid y$, we can write $x=d q_{1}$ and $y=d q_{2}$. Then,

$$
\begin{aligned}
x-y & =d q_{1}-d q_{2} \\
& =d\left(q_{1}-q_{2}\right) \\
& =d q_{3}
\end{aligned}
$$

In other words, $d \mid(x-y)$.

## Euclid's idea: proof details, part 2

Show $\operatorname{gcd}(x-y, y) \leq \operatorname{gcd}(x, y)$
Let $d$ be a common divisor of $x-y$ and $y$.
We need to show that $d \mid x$ and $d \mid y$.

## Euclid's idea: proof details, part 2

Show $\operatorname{gcd}(x-y, y) \leq \operatorname{gcd}(x, y)$
Let $d$ be a common divisor of $x-y$ and $y$.
We need to show that $d \mid x$ and $d \mid y$.
Since $d \mid(x-y)$ and $d \mid y$, we can write $x-y=d q_{1}$ and $y=d q_{2}$. Then,

$$
\begin{aligned}
x & =(x-y)+y \\
& =d q_{1}+d q_{2} \\
& =d\left(q_{1}+q_{2}\right) \\
& =d q_{3}
\end{aligned}
$$

In other words, $d \mid x$.

## Method 2: repeated subtraction

Euclid and the
Greatest
Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln connection

Number theory Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

$$
\begin{array}{ccl}
x & y & \text { action } \\
1035 & 759 & \text { subtract: } 1035-759=276
\end{array}
$$

## Method 2: repeated subtraction

Euclid and the
Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln connection

Number theory Bk VII, Prop. 1

Algorithms for gcd

Efficiency
Extension
An application

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |

## Method 2: repeated subtraction

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |

## Method 2: repeated subtraction

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |
| 483 | 276 | subtract: $483-276=207$ |

## Method 2: repeated subtraction

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |
| 483 | 276 | subtract: $483-276=207$ |
| 207 | 276 | swap |

## Method 2: repeated subtraction

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |
| 483 | 276 | subtract: $483-276=207$ |
| 207 | 276 | swap |
| 276 | 207 | subtract: $276-207=69$ |

## Method 2: repeated subtraction

Through the artist's eye

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |
| 483 | 276 | subtract: $483-276=207$ |
| 207 | 276 | swap |
| 276 | 207 | subtract: $276-207=69$ |
| 69 | 207 | swap |

## Method 2: repeated subtraction

Through the artist's eye

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |
| 483 | 276 | subtract: $483-276=207$ |
| 207 | 276 | swap |
| 276 | 207 | subtract: $276-207=69$ |
| 69 | 207 | swap |
| 207 | 69 | subtract: $207-69=138$ |

## Method 2: repeated subtraction

Through the artist's eye

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |
| 483 | 276 | subtract: $483-276=207$ |
| 207 | 276 | swap |
| 276 | 207 | subtract: $276-207=69$ |
| 69 | 207 | swap |
| 207 | 69 | subtract: $207-69=138$ |
| 138 | 69 | subtract: $138-69=69$ |

## Method 2: repeated subtraction

Through the artist's eye

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |
| 483 | 276 | subtract: $483-276=207$ |
| 207 | 276 | swap |
| 276 | 207 | subtract: $276-207=69$ |
| 69 | 207 | swap |
| 207 | 69 | subtract: $207-69=138$ |
| 138 | 69 | subtract: $138-69=69$ |
| 69 | 69 | subtract: $69-69=0$ |

## Method 2: repeated subtraction

Through the artist's eye

Euclid's simplified rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | subtract: $1035-759=276$ |
| 276 | 759 | swap |
| 759 | 276 | subtract: $759-276=483$ |
| 483 | 276 | subtract: $483-276=207$ |
| 207 | 276 | swap |
| 276 | 207 | subtract: $276-207=69$ |
| 69 | 207 | swap |
| 207 | 69 | subtract: $207-69=138$ |
| 138 | 69 | subtract: $138-69=69$ |
| 69 | 69 | subtract: $69-69=0$ |
| 0 | 69 | stop: 69 is the greatest common divisor |

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application

## Method 2: as conceived by Euclid

Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application

## Method 2: as conceived by Euclid

Find gcd of 30 and 21

## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the Greatest Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection

Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the
Greatest
Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Method 2: as conceived by Euclid

## Find gcd of 30 and 21

Euclid and the
Greatest
Common Divisor

Through the artist's eye

Background
The Elements: old and new

Lincoln
connection
Number theory
Bk VII, Prop. 1
Algorithms for gcd

Efficiency
Extension
An application


## Euclid's idea, using division

## Key idea

Repeated subtraction is just (fourth grade) division!

## Euclid's rule

If $x$ and $y$ are positive integers with $x \geq y$, then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x \bmod y, y)=\operatorname{gcd}(y, x \bmod y)$.

## Method 3: Euclid's method

Euclid and the Greatest

Euclid's rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$

```
        x y action
1035 759 divide: 1035 = 1.759 + 276
```


## Method 3: Euclid's method

Euclid's rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | divide: $1035=1 \cdot 759+276$ |
| 759 | 276 | divide: $759=2 \cdot 276+207$ |

## Method 3: Euclid's method

Euclid's rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | divide: $1035=1 \cdot 759+276$ |
| 759 | 276 | divide: $759=2 \cdot 276+207$ |
| 276 | 207 | divide: $276=1 \cdot 207+69$ |

## Method 3: Euclid's method

Euclid's rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | divide: $1035=1 \cdot 759+276$ |
| 759 | 276 | divide: $759=2 \cdot 276+207$ |
| 276 | 207 | divide: $276=1 \cdot 207+69$ |
| 207 | 69 | divide: $207=3 \cdot 69+0$ |

## Method 3: Euclid's method

Euclid's rule: if $x \geq y$ then $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$

| $x$ | $y$ | action |
| :---: | :---: | :--- |
| 1035 | 759 | divide: $1035=1 \cdot 759+276$ |
| 759 | 276 | divide: $759=2 \cdot 276+207$ |
| 276 | 207 | divide: $276=1 \cdot 207+69$ |
| 207 | 69 | divide: $207=3 \cdot 69+0$ |
| 69 | 0 | stop: 69 is the greatest common divisor |

## Euclid's method

We might call Euclid's method the granddaddy of all algorithms, because it is the oldest nontrivial algorithm that has survived to the present day.

Donald Knuth
The Art of Computer Programming

## Java implementation

## Euclid's rule

If $x$ and $y$ are positive integers with $x \geq y$, then $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$.

```
public static int gcd(int x, int y)
{
    if (y == 0)
        return x;
    else
        return gcd(y, x % y);
}
```


## Efficiency of Euclid's algorithm

## Lamé's theorem

To find the greatest common divisor of integers $x$ and $y$ using Euclid's algorithm takes at most $5 k$ steps, where $k$ is the number of digits of $y$.

## An extension of Euclid's algorithm

In addition to finding $\operatorname{gcd}(x, y)=d$, we might want values $a$ and $b$ such that

$$
a x+b y=d
$$

We know $\operatorname{gcd}(1035,759)=69$. In addition,

$$
3 \cdot 1035+(-4) \cdot 759=69
$$

A small modification to Euclid's method determines these two values.

## Euclid contributes to the Internet age

- Public-key cryptography: how to keep a secret, yet still communicate?
- Two players, traditionally known as "Alice" and "Bob"
- Bob:
- chooses two large prime numbers, $p$ and $q$
- computes a public key that everyone can know. This key includes the product $p q$, but not the two primes.
- computes a private key, computed with an extended version of Euclid's algorithm
- Alice:
- encodes a message, using Bob's public key
- Bob decodes the message using his private key

Number theory, once thought to be an abstract area of mathematics without application, is anything but. Hats off to Euclid!

